Cross-National Benchmarking of Bankruptcy Prediction Models Across V4 Economies

Authors

DOI:

https://doi.org/10.31181/ijes1512026223

Keywords:

Bankruptcy prediction, Predictive analytics, Economic decision-making, AI and machine learning, Cross-national analysis, Visegrad Group countries

Abstract

In recent years, the prediction of corporate bankruptcy has become an increasingly important topic in financial and economic research, particularly in the manufacturing sector of Central and Eastern Europe. Accurate early-warning models are essential for mitigating financial risks and ensuring business sustainability. This study investigates the comparative performance of classical statistical and machine learning (ML) models for predicting corporate bankruptcy across manufacturing firms in the Visegrad Group (V4) countries, addressing the problem of financial distress forecasting in transitional economies. The purpose of the research is to evaluate whether pooled regional models perform as effectively as country-specific models and to examine the influence of national data characteristics, such as sample size and heterogeneity, on predictive accuracy. A balanced dataset of firm-level financial indicators from Slovakia, the Czech Republic, Hungary, and Poland was employed, and three classification techniques, namely logistic regression (LR), artificial neural networks (ANN), and decision trees (DT), were applied to develop predictive models for individual countries as well as for the combined V4 region. Model performance was assessed using multiple classification metrics including accuracy, F1 score, AUC (area under the receiver operating characteristic curve), precision, and recall, with careful attention to handling class imbalance. The results indicate consistently high discriminatory power across all models, with AUC values ranging from 0.929 to 0.991, classification accuracy between 94.9% and 98.3%, and F1 scores from 0.972 to 0.991. Artificial neural networks slightly outperformed logistic regression and decision trees, particularly in countries with larger samples, while pooled models demonstrated performance comparable to country-specific models, highlighting the generalizability of predictive models across V4 economies. The findings carry practical implications for policymakers, creditors, and business managers, supporting the development of scalable early-warning systems, enhancing risk assessment practices, and informing strategic decision-making in dynamic economic environments. Overall, the study contributes both to the theoretical understanding of model performance in bankruptcy prediction and to applied knowledge for regional economic foresight and business intelligence. 

Downloads

Download data is not yet available.

References

Dvorsky, J. (2025). Impact of Artificial Intelligence on Enterprise Risk Management: A case study from the Slovak SME Segment. Journal of Business Sectors, 3(1), 96–103. https://doi.org/10.62222/CAJA0666 DOI: https://doi.org/10.62222/CAJA0666

Santoro, G., Jabeen, F., Kliestik, T., & Bresciani, S. (2024). AI-powered growth hacking: Benefits, challenges and pathways. Management Decision. Advance online publication. https://doi.org/10.1108/MD-10-2023-1964 DOI: https://doi.org/10.1108/MD-10-2023-1964

Musa, H., Rech, F., Musova, Z., Yan, C., & Pinter, L. (2024). Bankruptcy Prediction Using Machine Learning: The Case of Slovakia. In Applied Economic Research and Trends. ICOAE 2023 (pp. 395–405). Springer Proceedings in Business and Economics. Springer. https://doi.org/10.1007/978-3-031-49105-4_34 DOI: https://doi.org/10.1007/978-3-031-49105-4_34

Horvathova, J., Mokrisova, M., & Schneider, A. (2024). The application of machine learning in diagnosing the financial health and performance of companies in the construction industry. Information, 15(6), 355. https://doi.org/10.3390/info15060355 DOI: https://doi.org/10.3390/info15060355

Papik, M., & Papikova, L. (2025). The possibilities of using AutoML in bankruptcy prediction: Case of Slovakia. Technological Forecasting and Social Change, 215, 124098. https://doi.org/10.1016/j.techfore.2025.124098 DOI: https://doi.org/10.1016/j.techfore.2025.124098

Amin, M. B., Asaduzzaman, M., Debnath, G. C., Rahaman, M. A., & Olah, J. (2024). Effects of circular economy practices on sustainable firm performance of green garments. Oeconomia Copernicana, 15(2), 637–682. https://doi.org/10.24136/oc.2795 DOI: https://doi.org/10.24136/oc.2795

Capestro, M., Rizzo, C., Kliestik, T., Peluso, A. M., & Pino, G. (2024). Enabling digital technologies adoption in industrial districts: The key role of trust and knowledge sharing. Technological Forecasting and Social Change, 198, 123003. https://doi.org/10.1016/j.techfore.2023.123003 DOI: https://doi.org/10.1016/j.techfore.2023.123003

Stepanek, L., Habarta, F., Mala, I., Stepanek, L., Nakladalova, M., Borikova, A., & Marek, L. (2023). Machine learning at the service of survival analysis: Predictions using Time-to-Event decomposition and classification applied to a decrease of blood antibodies against COVID-19. Mathematics, 11(4), 819. https://doi.org/10.3390/math11040819 DOI: https://doi.org/10.3390/math11040819

Michalkova, L., Krulicky, T., & Kucera, J. (2024). Detection of earnings manipulations during the corporate life cycle in Central European countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(2), 623–660. https://doi.org/10.24136/eq.3030 DOI: https://doi.org/10.24136/eq.3030

Perotti, F. A., Dhir, A., Ferraris, A., & Kliestik, T. (2024). Investigating digital technologies’ implementation in circular businesses: Evidence from the going circular path. Journal of Management & Organization, 30(3), 421–451. https://doi.org/10.1017/jmo.2023.60 DOI: https://doi.org/10.1017/jmo.2023.60

Asad, A. I., Popesko, B., & Damborsky, M. (2024). The nexus between economic policy uncertainty and innovation performance in Visegrad group countries. Oeconomia Copernicana, 15(3), 1067–1100. https://doi.org/10.24136/oc.2804 DOI: https://doi.org/10.24136/oc.2804

Virglerova, Z., Homolka, L., Smrcka, L., Lazanyi, K., & Kliestik, T. (2017). Key determinants of the quality of business environment of SMEs in the Czech Republic. E & M Ekonomie a Management, 20(2), 87–101. https://doi.org/10.15240/tul/001/2017-2-007 DOI: https://doi.org/10.15240/tul/001/2017-2-007

Letkovsky, S., Jencova, S., & Vasanicova, P. (2024). Is artificial intelligence really more accurate in predicting bankruptcy? International Journal of Financial Studies, 12(1), 8. https://doi.org/10.3390/ijfs12010008 DOI: https://doi.org/10.3390/ijfs12010008

Papik, M., & Papikova, L. (2025). Automated Machine Learning for Predicting Corporate Tax Non-Compliance. In 2025 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 214–220). IEEE. DOI: https://doi.org/10.1109/BigComp64353.2025.00050

Gul, Y., & Altinirmak, S. (2025). Predicting Financial Failure: Empirical Evidence from Publicly–Quoted Firms in Developed and Developing Countries. Ekonomi Politika ve Finans Araştırmaları Dergisi, 10(1), 107–126. https://doi.org/10.30784/epfad.1595915 DOI: https://doi.org/10.30784/epfad.1595915

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933 DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Zhang, Q., Wang, J., Lu, A., Wang, S., & Ma, J. (2018). An improved SMO algorithm for financial credit risk assessment–Evidence from China’s banking. Neurocomputing, 272, 314–325. https://doi.org/10.1016/j.neucom.2017.07.002 DOI: https://doi.org/10.1016/j.neucom.2017.07.002

Huang, Y. P., & Yen, M. F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, 105663. https://doi.org/10.1016/j.asoc.2019.105663 DOI: https://doi.org/10.1016/j.asoc.2019.105663

Soukal, I., Maci, J., Trnkova, G., Svobodova, L., Hedvicakova, M., Hamplova, E., & Lefley, F. (2024). A state-of-the-art appraisal of bankruptcy prediction models focussing on the field’s core authors: 2010–2022. Central European Management Journal, 32(1), 3–30. DOI: https://doi.org/10.1108/CEMJ-08-2022-0095

Hardinata, L., & Warsito, B. (2018). Bankruptcy prediction based on financial ratios using Jordan Recurrent Neural Networks: A case study in Polish companies. Journal of Physics: Conference Series, 1025, 012098. https://doi.org/10.1088/1742-6596/1025/1/012098 DOI: https://doi.org/10.1088/1742-6596/1025/1/012098

Gepp, A., & Kumar, K. (2015). Predicting financial distress: A comparison of survival analysis and decision tree techniques. Procedia Computer Science, 54, 396–404. https://doi.org/10.1016/j.procs.2015.06.046 DOI: https://doi.org/10.1016/j.procs.2015.06.046

Chen, Y. S., Lin, C. K., Lo, C. M., Chen, S. F., & Liao, Q. J. (2021). Comparable studies of financial bankruptcy prediction using advanced hybrid intelligent classification models to provide early warning in the electronics industry. Mathematics, 9(20), 2622. https://doi.org/10.3390/math9202622 DOI: https://doi.org/10.3390/math9202622

Soui, M., Smiti, S., Mkaouer, M. W., & Ejbali, R. (2020). Bankruptcy prediction using stacked auto-encoders. Applied Artificial Intelligence, 34(1), 80–100. https://doi.org/10.1080/08839514.2019.1691849 DOI: https://doi.org/10.1080/08839514.2019.1691849

Ptak-Chmielewska, A. (2019). Predicting micro-enterprise failures using data mining techniques. Journal of Risk and Financial Management, 12(1), 30. https://doi.org/10.3390/jrfm12010030 DOI: https://doi.org/10.3390/jrfm12010030

Zięba, M., Tomczak, S. K., & Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58, 93–101. https://doi.org/10.1016/j.eswa.2016.04.001 DOI: https://doi.org/10.1016/j.eswa.2016.04.001

Tsai, C. F. (2020). Two‐stage hybrid learning techniques for bankruptcy prediction. Statistical Analysis and Data Mining, 13(6), 565–572. https://doi.org/10.1002/sam.11482 DOI: https://doi.org/10.1002/sam.11482

Moon, G., & Kim, K. J. (2023). Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection. Journal of Intelligence and Information Systems, 29(2), 241–265. https://doi.org/10.13088/jiis.2023.29.2.241

Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838–846. https://doi.org/10.1016/j.ejor.2009.03.036 DOI: https://doi.org/10.1016/j.ejor.2009.03.036

Khashman, A. (2010). Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Systems with Applications, 37(9), 6233–6239. https://doi.org/10.1016/j.eswa.2010.02.101 DOI: https://doi.org/10.1016/j.eswa.2010.02.101

Prusak, B., & Karas, M. (2024). Bankruptcy prediction in Visegrad Group countries. Polish Journal of Management Studies, 30(1), 268–288. https://doi.org/10.17512/pjms.2024.30.1.16 DOI: https://doi.org/10.17512/pjms.2024.30.1.16

Chrastinova, Z. (1998). Metody hodnotenia ekonomickej bonity a predikcie financnej situacie polnohospodarskych podnikov. VUEPP.

Gurcik, L. (2002). G-index—The financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48(8), 373–378. https://doi.org/10.17221/5338-AGRICECON DOI: https://doi.org/10.17221/5338-AGRICECON

Adamko, P., & Svabova, L. (2016). Prediction of the risk of bankruptcy of Slovak companies. In Managing and modelling of financial risks: 8th international scientific conference (pp. 15–20).

Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting financial distress of Slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability, 12(10), 3954. https://doi.org/10.3390/su12103954 DOI: https://doi.org/10.3390/su12103954

Horvathova, J., Mokrisova, M., & Petruska, I. (2021). Selected methods of predicting financial health of companies: Neural networks versus discriminant analysis. Information, 12(12), 505. https://doi.org/10.3390/info12120505 DOI: https://doi.org/10.3390/info12120505

Durica, M., Frnda, J., & Svabova, L. (2023). Artificial neural network and decision tree-based modelling of non-prosperity of companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 1105–1131. https://doi.org/10.24136/eq.2023.035 DOI: https://doi.org/10.24136/eq.2023.035

Dvoracek, J., Sousedikova, R., & Domaracka, L. (2008). Industrial enterprises bankruptcy forecasting. Metalurgija, 47(1), 33–36.

Dvoracek, J., Sousedikova, R., Repka, M., Domaracka, L., Bartak, P., & Bartosikova, M. (2012). Choosing a method for predicting economic performance of companies. Metalurgija, 51(4), 525–528.

Nemec, D., & Pavlik, M. (2016). Predicting insolvency risk of the Czech companies. In Proceedings of the International Conference: Quantitative Methods in Economics: Multiple Criteria Decision Making XVIII (pp. 258–263).

Korol, T. (2010). Forecasting bankruptcies of companies using soft computing techniques. *Finansowy Kwartalnik Internetowy “e-Finanse”, 6*, 1–14.

Pisula, T., Mentel, G., & Brozyna, J. (2015). Non-statistical methods of analysing of bankruptcy risk. Folia Oeconomica Stetinensia, 15(1), 7–21. https://doi.org/10.1515/foli-2015-0029 DOI: https://doi.org/10.1515/foli-2015-0029

Szeverin, E.-K., & Laszlo, K. (2014). The efficiency of bankruptcy forecast models in the Hungarian SME sector. Journal of Competitiveness, 6(2), 56–73. https://doi.org/10.7441/joc.2014.02.05 DOI: https://doi.org/10.7441/joc.2014.02.05

Nyitrai, T., & Virag, M. (2019). The effects of handling outliers on the performance of bankruptcy prediction models. *Socio-Economic Planning Sciences, 67*, 34–42. https://doi.org/10.1016/j.seps.2018.08.004 DOI: https://doi.org/10.1016/j.seps.2018.08.004

Shrivastava, A., Kumar, K., & Kumar, N. (2018). Business distress prediction using bayesian logistic model for Indian firms. Risks, 6(4), 113. https://doi.org/10.3390/risks6040113 DOI: https://doi.org/10.3390/risks6040113

Garcia, V., Marques, A. I., Sanchez, J. S., & Ochoa-Dominguez, H. J. (2019). Dissimilarity-based linear models for corporate bankruptcy prediction. Computational Economics, 53, 1019–1031. https://doi.org/10.1007/s10614-017-9783-4 DOI: https://doi.org/10.1007/s10614-017-9783-4

Agrawal, K., & Maheshwari, Y. (2019). Efficacy of industry factors for corporate default prediction. IIMB Management Review, 31(1), 71–77. https://doi.org/10.1016/j.iimb.2018.08.007 DOI: https://doi.org/10.1016/j.iimb.2018.08.007

Alifiah, M. N. (2014). Prediction of financial distress companies in the trading and services sector in Malaysia using macroeconomic variables. *Procedia-Social and Behavioral Sciences, 129*, 90–98. https://doi.org/10.1016/j.sbspro.2014.03.652 DOI: https://doi.org/10.1016/j.sbspro.2014.03.652

Ben Jabeur, S., & Serret, V. (2023). Bankruptcy prediction using fuzzy convolutional neural networks. Research in International Business and Finance, 64, 101844. https://doi.org/10.1016/j.ribaf.2022.101844 DOI: https://doi.org/10.1016/j.ribaf.2022.101844

Klepac, V., & Hampel, D. (2017). Predicting financial distress of agriculture companies in EU. *Agricultural Economics-Zemedelska Ekonomika, 63*(8), 347–355. https://doi.org/10.17221/374/2015-AGRICECON DOI: https://doi.org/10.17221/374/2015-AGRICECON

Rech, F., Isaboke, C., & Xu, H. (2025). Surviving the Pandemic: Financial Distress Prediction for Slovak SME Manufacturers. Journal of Business Sectors, 3(1), 41–51. https://doi.org/10.62222/SNRN2189 DOI: https://doi.org/10.62222/SNRN2189

Sun, J., Zhou, M., Ai, W., & Li, H. (2019). Dynamic prediction of relative financial distress based on imbalanced data stream: From the view of one industry. Risk Management, 21(4), 215–242. https://doi.org/10.1057/s41283-018-0047-y DOI: https://doi.org/10.1057/s41283-018-0047-y

Lin, K. C., & Dong, X. (2018). Corporate social responsibility engagement of financially distressed firms and their bankruptcy likelihood. Advances in Accounting, 43, 32–45. https://doi.org/10.1016/j.adiac.2018.08.001 DOI: https://doi.org/10.1016/j.adiac.2018.08.001

Svabova, L., & Durica, M. (2019). Being an outlier: A company non-prosperity sign? Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(2), 359–375. https://doi.org/10.24136/eq.2019.017 DOI: https://doi.org/10.24136/eq.2019.017

Kovacova, M., Valaskova, K., Durana, P., & Kliestikova, J. (2019). Innovation management of the bankruptcy: Case study of Visegrad group countries. Marketing and Management of Innovations, 4, 241–251. https://doi.org/10.21272/mmi.2019.4-19 DOI: https://doi.org/10.21272/mmi.2019.4-19

Jencova, S., Stefko, R., & Vasanicova, P. (2020). Scoring model of the financial health of the electrical engineering industry’s non-financial corporations. Energies, 13(17), 4364. https://doi.org/10.3390/en13174364 DOI: https://doi.org/10.3390/en13174364

Michalkova, L., & Ponisciakova, O. (2025). Bankruptcy Prediction, Financial Distress and Corporate Life Cycle: Case Study of Central European Enterprises. Administrative Sciences, 15(2), 63. https://doi.org/10.3390/admsci15020063 DOI: https://doi.org/10.3390/admsci15020063

Duricova, L., Kovalova, E., Gazdikova, J., & Hamranova, M. (2025). Refining the Best-Performing V4 Financial Distress Prediction Models: Coefficient Re-Estimation for Crisis Periods. Applied Sciences, 15(6), 2956. https://doi.org/10.3390/app15062956 DOI: https://doi.org/10.3390/app15062956

Gajdosikova, D., Valaskova, K., Kliestik, T., & Machova, V. (2022). COVID-19 pandemic and its impact on challenges in the construction sector: A case study of Slovak enterprises. Mathematics, 10(17), 3130. https://doi.org/10.3390/math10173130 DOI: https://doi.org/10.3390/math10173130

Jencova, S., Petruska, I., & Miskufova, M. (2024). Relationship between profitability and debt: The case of the Slovak Energy and Mining sector. *Ekonomicko-manazerske spektrum, 18*(2), 38–49. https://doi.org/10.26552/ems.2024.2.38-49 DOI: https://doi.org/10.26552/ems.2024.2.38-49

Valaskova, K., Gajdosikova, D., & Belas, J. (2023). Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries. Oeconomia Copernicana, 14(1), 253–293. https://doi.org/10.24136/oc.2023.007 DOI: https://doi.org/10.24136/oc.2023.007

Svabova, L., Labosova, V., Borovcova, M., & Jarabicova, N. (2024). Customer satisfaction prediction: A case study for electro-bike customers. *Ekonomicko-manazerske spektrum, 18*(2), 85–98. https://doi.org/10.26552/ems.2024.2.85-98 DOI: https://doi.org/10.26552/ems.2024.2.85-98

Bozsik, J. (2010). Artificial neural networks in default forecast. In 8th International Conference on Applied Informatics (pp. 31–39).

Al‐Sarraf, A. (2020). Bankruptcy reform in the Middle East and North Africa: Analyzing the new bankruptcy laws in the UAE, Saudi Arabia, Morocco, Egypt, and Bahrain. International Insolvency Review, 29(2), 159–180. https://doi.org/10.1002/iir.1378 DOI: https://doi.org/10.1002/iir.1378

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28, 1–26. https://doi.org/10.18637/jss.v028.i05 DOI: https://doi.org/10.18637/jss.v028.i05

Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 140, 113429. https://doi.org/10.1016/j.dss.2020.113429 DOI: https://doi.org/10.1016/j.dss.2020.113429

Chang, V., Sivakulasingam, S., Wang, H., Wong, S. T., Ganatra, M. A., & Luo, J. (2024). Credit Risk Prediction Using Machine Learning and Deep Learning: A Study on Credit Card Customers. Risks, 12(11), 174. https://doi.org/10.3390/risks12110174 DOI: https://doi.org/10.3390/risks12110174

Sizan, M. M. H., Chouksey, A., Miah, M. N. I., Pant, L., Ridoy, M. H., Sayeed, A. A., & Khan, M. T. (2025). Bankruptcy Prediction for US Businesses: Leveraging Machine Learning for Financial Stability. Journal of Business and Management Studies, 7(1), 1–14. https://doi.org/10.32996/jbms.2025.7.1.1 DOI: https://doi.org/10.32996/jbms.2025.7.1.1

Sun, Y., Chai, N., Dong, Y., & Shi, B. (2022). Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach. International Journal of Forecasting, 38(3), 1158–1172. https://doi.org/10.1016/j.ijforecast.2022.01.006 DOI: https://doi.org/10.1016/j.ijforecast.2022.01.006

Egbunike, F. C., Anachedo, C. K., Echekoba, F. N., & Ubesie, C. M. (2022). A comparative study of genetic algorithm and neural network model in bankruptcy prediction of manufacturing firms in Nigeria. Journal of Contemporary Issues in Accounting, 3(1), 231–271.

Published

2025-12-09

Issue

Section

Articles

How to Cite

Gajdosikova, D., Valaskova, K., & Durana, P. (2025). Cross-National Benchmarking of Bankruptcy Prediction Models Across V4 Economies. International Journal of Economic Sciences, 15(1), 1-19. https://doi.org/10.31181/ijes1512026223